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OPTIMUM STEP DESIGN FOR CENTERING OF PISTONS 

MOVING IN A N  INCOMPRESSIBLE FLUID 

by l zhak Etsion* and Berna rd  J. Hamrock 

Lewis Research Center  

SUMNlARY 

Hydrodynamic effects are analyzed for a stepped piston moving within a tight- 
clearance tube filled with an incompressible fluid. 
fects that were analyzed in an ear l ier  paper, a complete solution is obtained and an op- 
timum step design for centering of the piston i s  suggested. 
from an axial driving force is calculated, and some experimental resul ts  for pistons 
falling in a water-filled tube are presented. 

Together with the hydrostatic ef- 

The axial speed resulting 

INTRODUCTION 

The operation of hydraulic equipment often involves the sliding of a piston within a 
cylindrical bore. Among the applications a re  hydraulic valves, pumps, and actuators 
(refs. 1 to 3); viscometers and timing devices (refs. 4 and 5); and hydrostatic extrud- 
ers (ref. 6). 
past the piston. It can be shown that the minimum leakage occurs when the piston is 
concentric within its conduit and that the leakage past the piston increases as the second 
power of the eccentricity. For a fully eccentric, plain cylindrical piston the leakage is 
22 times that when the piston is concentric (ref. 4). Hence, to control the leakage, one 
has to control the eccentricity. 
to be minimized as well. 

these methods were analyzed or tested only with a stationary piston. 
the assumption that the hydrodynamic effects due to the axial motion are negligible as 

An important factor in all these applications is the ra te  of fluid leakage 

1 

For the leakage to be minimized, the eccentricity has 

Some methods have been suggested to reduce the eccentricity (refs. 7 to 9), but all 
This was based on 
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compared with the hydrostatic effects due to the pressure difference across  the piston. 
Zn reference 9 a stationary stepped piston is analyzed and an optimum step config- 

uration that minimizes the ratio of leakage to centering force is found. It is the objec- 
tive of this work to confirm experimentally the analysis of reference 9 and to find an- 
alytically the importance of hydrodynamic effects. 

HYDRODYNAMIC EFFECTS 

Step Pressure  

A stepped cylindrical piston in a cylindrical tube of the type being considered is 
shown in figure 1. The tube is filled with a fluid, and the piston moves with a velocity 
U relative to the stationary tube. The leading edge of the piston has the smaller diam- 
eter so  that the hydrodynamic pressure buildup around the piston produces a centering 
force (ref. 10). Based on this centering effect and the assumption that any other radial 
load acting on the piston is small  enough to cause only smal l  eccentricity, the problem 
can be treated as a one-dimensional case. Thus, the governing equation for a nontilted 
piston, where dh/dx = 0, is 

with the following boundary conditions (for the hydrodynamic effects): 

p = O  at x = O  anda t  x = L  

(All symbols a r e  defined in appendix A. ) 

linear, as shown in figure 2 where the hydrodynamic pressure on the step (p ) 
function of e .  
and the tube moves relative to the piston. 

Since the film thickness is independent of x, the axial pressure variation must be 
is a 

' h  
To simplify the calculation, the coordinate system is fixed at the piston 

From the continuity of flow at the step the following can be written: 

2 12p xs 2 12p (L - xs) 

This equation can be rewritten as 
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(“’h 1 2 p  ( L -  ’& xs +- 5) = - ( h m -  U 2 hM) - _ _ _  

where 

hm = Cm(l + E COS 0) 

hM = C m ( a  + E COS 0) 

and 

If the analysis is restricted to small  eccentricity ratios E ,  the following approximate 
expressions can be written: 

(7) hm 3 = Cm(l  3 + 3~ cos 0) 

c Q l + - C O S O  h ~ =  m 3 3 ( :  ) 
Substituting equations (7) and (8) into equation (2) gives 

where 

S X 
/ 3 = -  

L 

After rearranging terms,  the s tep pressure (p,) becomes 
h 



where 

The location of the center of pressure (x ) can be obtained directly from the lo-  
cF 11 

cation of the centroid of the typical pressure distribution shown in figure 2. Hence. 

2 

which yields the simple expression 

The location of the center of pressure is important for eliminaIlng uncit-sirable tilting 
moments. 

Centering Force 

The centerins ; U I ' C ' ~  (fig. 2) can be written as 

Substituting equation (1 1) into this equation gives 

n 

Tn order that yh < 1, from equation (12) the following inequality mus t  hold: 

36[1 + @(02 - 13 < 1 + d(a3 - 1) 

(13) 

For Q! > 1, this is valid for any E z 1/3. Assuming yh < 1 and using reference 11 

4 
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for the evaluation of the pressure integral give 

The centering force diminishes to zero as the piston approaches the concentric po- 
Therefore, it is in that region of small  eccentricity where one would like to sition. 

maximize the centering force. 
the following approximation can be written: 

2 If E is very small ,  it can be assumed that yh << 1 and 

By making use of equations (15) and (12), equation (14) can be written as 

where 

Flow RaLe 

The flow rate  past the piston shown in figure 1 can be expressed as 

By making use u i  equation (7) and the tables of integrals found in reference 11, this 
equation can be integrated to give 

- 
Qh = TfURC,Qh 

where 

5 



2 If (as was  done in the previous section) it is assumed that yh << 1 and that equation 
(15) applies, equation (19) can be rewritten as 

1 + P(a2 - 1) 

1 + P(a3 - 1) 

- 
Q h = @  

Friction Force 

The friction force acting on the plug is 

The shear stress T in equation (21) can be written as 

Th E!! + y!!, 
h 2 d x h  

Substituting equation (22) into (21) and integrating once over the length give the friction 
force as 

Substituting equation (11) and the film thickness equations (eqs. (3) and (4)) into this 
equation gives, after integration, 

2 s p u R L  - 
Fh = Fh 

‘m 

where 
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which, for small  eccentricity ratios E ,  becomes 

- 1 + p(CY - 1) + 3(CY - Q2P(l - B) Fh = 
CY 1 + p(CY3 - 1) 

The Optimum Step 

One of the main objects in piston design is to maintain the eccentricity as low as 
possible, thus minimizing the leakage past the piston and also diminishing the possibility 
of hydraulic lock (ref. 1). Minimum eccentricity can be achieved by selecting the par- 
ameters Q and p so  as to maximize the nondimensional centering force qh. 

In figure 3 the nondimensional centering force wh is plotted against the step length 
parameter p for various step heights. An interesting result  is the existence of a max- 
imum for % at CY = 1.6 and p = 0.26. This is different from the hydrostatic case of 
reference 9, where the centering force increases monotonically with the increase of CY. 

However, the present optimum step configuration resembles the one described in ref- 
erence 12 for a flat, stepped slider, where the optimum values a re  cy = 1.87 and 
p = 0.28. 

h 

Regarding the leakage, it is clear from equation (20) that the minimum for G h  oc- 
curs  whenever CY = 1 or  p = 1, which corresponds to a plain cylinder as expected. 
However, from equation (17) it is clear that for these values the centering force van- 
ishes. Thus, a plain cylindrical piston can assume any eccentricity up to E = 1 with 
the result of a significant increase in the leakage as compared with the concentric posi- 
tion (ref. 4). 

ratio between the nondimensional leakage and the centering force. An optimum step was 
found that minimized this parameter. The same procedure can be used for a moving 
piston. Thus, we shall look for a minimum of a parameter E given by 

In reference 9 a design parameter for a stationary stepped piston is defined as the 

The values of CY and p that minimize the parameter E will serve as the optimum 
sign criteria.  

Figure 4 presents the variation of the design parameter E with respect to step 
height CY and location p. The most interesting result  is that a large margin exists 
an optimum design, ranging from an Q of 1 .3  to 1.7 and a p of 0 .3  to 0.4; anywhere 
in this range, E is within 7 percent of the absolute minimum. This is the same range 
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as in the hydrostatic case of reference 9. Hence, the same step configuration is bene- 
ficial for  both the hydrostatic and hydrodynamic effects. 

ELAPSED TIME OF MOVING PISTON 

For a piston moving at a constant velocity in  a tube filled with fluid, the axial driv- 
ing force T is balanced by the friction force and the force due to the pressure differ- 
ence across  the piston. Hence, 

where the hydrostatic friction force F 
hydrostatic results. Substituting equations (23) and (B10) into equation (27) gives 

is given in appendix B along with the other 
g 

2 R -  T = TR pe + TRC p F + 2npUL - Fh m e  g 
'm 

If all the fluid remains in  the tube, the axial velocity of the piston is given by I 

2 T R U = Q  + Q h  
g 

which, by substituting equations (18) and (B5), becomes 

From equation (29) the pressure difference across the piston is 

and by substituting equation (30) into equation (28) the driving force becomes 

The dimensionless parameters Qh and Fh a s  well as 62 g g 
are, for the range of optimum step design, of order of magnitude 1. Hence, the er- 

and 2 (see appendix B) 
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r o r  involved in neglecting the hydrodynamic effects depends on Cm/R. 
tical applications, the value of Cm/R is less than 
hydrodynamic effects. 

pressure difference across  the moving piston becomes very small, and the hydrostatic 
effects are less significant. Such a situation occurs for instance in gun recoil bearings 
(ref. 13), where in spite of low radial clearance the hydrodynamic effects are more im- 
portant than the hydrostatic effects. 

For the piston falling in a tube, as described in the following sections, all  the 
terms containing Cm/R in equation (31) can be neglected as compared to unity. Also 
the driving force T is 

For most prac- 
thus justifying the neglect of 

However, in some cases where the fluid is free to flow out of the cylinder, the 

(32) 2 T = ~ T R  Lg(Pp - Pf) 

Hence, equation (31) becomes 

When the velocity of the piston is constant as i t  falls down the tube, the time it takes the 
piston to f a l l  a distance H is 

which by equation (33) becomes 

6 pRH t =  (34) 

As a check on the validity on this equation, if  one assumes a plain piston instead of a 
stepped piston (implying that 6 
agreement with the equation developed in  reference 4. 

in eq. (34) is unity), equation (34) is in complete 
g 

TEST APPARATUS AND PISTONS 

The test apparatus used in the experiments is shown in figure 5. The precision 
U-tube had a bore of 1.58854.003 centimeters with a wall thickness of 1.12 centimeters 
and overall length of 120 centimeters. The tube material was Pyrex glass that was op- 
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tically clear with graduations marked on it. Only one-half of the U-tube shown in fig- 
u r e  5 was used in the tes ts .  The tube was alined in the vertical position within 0.25 
degree , 

Three of the pistons used in the tests are shown in figure 6. All the pistons were 
made of 17-4 *PH stainless steel  and hardened. The diameters of the pistons were ma- 
chined within *O. 0025 centimeter. Table I gives the dimensions of the pistons tested. 
The dimensions given in  the table a re  shown physically in figure 1. 
responds to piston 7, figure 6(b) corresponds to piston 2, and figure 6(c) corresponds to 
piston 3. 

Figure 6(a) cor- 

TEST PROCEDURE 

Tap water was put into the U-tube, filling both ends. The top of the left half of the 
The f i rs t  13 cm of the tube shown in figure 5 was not used U-tube (fig. 5) was plugged. 

for measuring the time of the falling piston since acceleration of the piston occurs in 
this portion of the tube. Beyond the first 13 cm the piston falls at a constant velocity. 
The fall of the piston w a s  timed with stopwatches capable of measuring to within 0.2 sec- 
ond. Tests were repeated to assure  the accuracy of the results.  

TEST RESULTS 

Table I1 shows the test  resul ts  and how well these results agree with the theory. In 
this table a! is defined by equation (5), p is defined by equation (10). and is de- 

g 
fined by equation (B7). The theoretical elapsed time t it took the piston to f a l l  50.8 
centimeters as described by equation (34) is also given in the table. The parameters in 
equation (34) and their respective values, which were constant for all the tests,  a r e  

2 (1) Viscosity of fluid, p, 0 . 9 6 ~ 1 0 - ~  N-sec/cm at 22' C 
(2) Radius of tube, R, 0.7943 centimeter 
(3) Distance piston falls, H, 50.8 centimeters 
(4) Density of fluid, pf, 1 g/cm 
(5) Density of piston, p 

3 

7.85 g/cm3 P' 
The parameter r in table I1 is the experimental value of the elapsed time it took the 
piston to fall a distance of 50.8 centimeters. 

The percentage difference between the experimental and theoretical values of the 
piston's elapsed falling time can be written as 

A = cy) 100 
10 
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i In table T.I the value of A varies from -35 percent to +13 percent. 
In reference 4 it is noted that some of the plain cylindrical pistons wobbled as they 

fell down the tube. The same phenomenon was  observed with piston 8 of the present s e t  
(an unstepped piston). The wobble was not apparent with unstepped piston 7, which had a 
clearance ratio C/R of 0.0179 as compared with 0.0264 for piston 8 . No wobbling 
occurred with any of the stepped pistons even at the large clearance ratios. This sug- 
gests a stabilizing effect of the step, as was observed in reference 4. For the stepped 
pistons, with the exception of piston 2, the agreement between theory and experiment 
was good, the deviation being 13 percent or less. The result  for the nonwobbling, plain 
cylindrical piston also agrees with the theory. 

* 

rl 

CONCLUDING REMARKS 

Hydrodynamic effects were analyzed for a stepped piston moving within a tight- 
clearance tube filled with an incompressible fluid. Centering force, center of pressure,  
flow rate, and friction force were derived analytically. These results, together with 
the hydrostatic effects that were analyzed in an ear l ier  paper constitute a complete sol- 
ution of the moving stepped piston and allow an optimum step design for centering of the 
piston to be calculated. The elapsed time of the moving piston resulting from an axial 
driving force was  calculated. Experimental resul ts  for pistons falling in a water-filled 
tube were presented. The agreement between theory and experiments was  good. For a 
plain piston with large clearance ratio (C/R > 0.025), a wobbling motion w a s  observed 
as  the piston fell down the tube. The stepped pistons always moved smoothly without 
any wobble. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 16, 1976, 
505-04. 
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APPENDIX A 

SYMBOLS 

A 

cM 

'm 
D 

Dl 

D2 
E 

e 

h 

L 

P 

Pe 

Q 
- 

Qh 
R 

T 

U 

W 

loo@ - t)/t 
larger radial clearance, (D - D2)/2 

smaller radial clearance, (D - D1)/2 

diameter of tube 

major diameter of piston 

minor diameter of piston 

design parameter, Q / W  

eccentricity 

friction force 

- _  

FhCm/2npURL 

gravitational acceleration 

distance piston falls 

film thickness 

length of piston 

pressure 

pressure difference across  piston 

flow rate  

radius of tube 

axial driving force 

theoretical elapsed time of falling piston 

experimental elapsed time of falling piston 

velocity of moving piston 

centering force 

2 W /3nLRpee 
g 

*I 

L 

12 



- 
wh w h  /9 77 PUR ( L/cm ) * E  

X axial coordinate 

CY step height parameter, CM’:Cm 

d step length parameter, xs/L 

defined by eq. (B2) 

defined by eq. (12) 

eccentricity ratio, e/c 

% 
yh 

m E 

e angular coordinate 

I-1 viscosity of fluid 

fluid density 

piston density 
p f 

pP 
7 shear s t r e s s  

Subscripts : 

CP center of pressure 

g hydrostatic 

h hydrodynamic 

M larger clearance 

m smaller clearance 

S step 

13 
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APPENDIX B 

HYDROSTATIC EFFECTS 

The hydrostatic s tep pressure as given in  reference 9 is 

where 

The other parameters from reference 9 are 

where 

($) =l+p 
6 

g 

3 

PeQg 
nCrn 

Q g  = 

12 +) 

- a! 
Qg = 

3 1 + p ( a  - 1) 

The hydrostatic friction force is found from 

where 

14 
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Integrating first over the length of the two portions of the piston gives 

which can be written as 

F = /" Cm el - cy)(ps) + ( c y  + E cos 0)p, R d e  
g 0 g 1 

Substituting p from equation (Bl) and integrating gives for  small  eccentricity ratios 
( s> g 

- 
F =  cy3@ + cy 

g 3 1 + @(CY - 1) 

where 

15 
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TABLE I. - DIMENSIONS OF CYLINDRICAL PISTONS TESTED 

I 

h. 

! 
1 

?iston 

1 
2 
3 
4 
5 
6 
I 
8 

3tep heighl 
a r  ameter 

CY 

1.22 
1.39 
1.40 
1.40 
1.60 
1.41 
1.00 
1.00 

Piston Kajor diameter 
of piston, 

cm 
Dl 

1.5606 
1.5603 
1.5606 
1.5606 
1.5606 
1.5469 
1.5608 
1.5476 

Minor diameter 
of piston, 

cm 

1.5545 
1.5494 
1.5494 
1.5494 
1.5438 
1.5298 
____- -  
_ _ _ - _ _  

~ ~~~~ 

Length of 
najor - diameter 
part of piston, 

cm 
xS' 

0.6299 
. 3150 
.6299 
.9322 
.6299 
.6299 

1. 5674 
1.5672 

Overall length 
of piston, 

L, 
cm 

1.5697 
1.5692 
1.5710 
1.5697 
1.5687 
1.5690 
1.5674 
1.5672 

TABLE IT. - TEST RESULTS AND COMPARISON WITH THEORY 

Step length 
parameter, 

0.4013 
.2037 
.4010 
.5939 
.4016 
.4015 

1.0 
I .  0 

Dimensionless 
hydrostatic 

flow, - 
Qg 

1.3652 
2.0000 
1.6147 
1.3479 
1.8258 
1.6242 
1 
1 

Smaller radial 
clearance. 

cm 

0.0140 
.0141 
.0140 
.0140 
.0141 
.0208 
.0138 
.0204 

Theoretical 
time of 

piston f a l l ,  

t, 
s ec 

97.4 
64.7 
82.4 
98.7 
72.9 
24.7 

136.7 
42.4 

~ 

3xperimental 
time of 

piston fall, 
t, 

sec  

N 

102.0 
42.2 
77.4 

104.1 
78.0 
27.8 

140.9 
33.1 

Per centage difference 
ietween experimental 
and theoretical times. 

A =?.;?) 100 

+5 
- 35 

- 6  
+5 
+7 

+13 
+3 

- 22 
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Figure  4. - Design parameters for var ious  step conf igura t ions .  
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Technology Surveys. 
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